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Disturbances in a power transmission system
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A simple model for a power transmission system is presented. In this model, disturbances of all sizes may
occur. They are randomly triggered and have the characteristic behavior of avalanches. A single parameter
describes the scaling of the avalanche size. This parameter combines a measure of closeness to the maximum
load, size of transferred loads during an overloading event, and connectivity of the system. The probability
distribution function of the size of the disturbance has power-scaling range with the exponent clake to

PACS numbegps): 05.40—a, 05.45-a

[. INTRODUCTION system, we first consider a simple ring network; then, we
increase the complexity of this network in two different
Power transmission systems are complex systems. Theivays. One way is by increasing the number of connections
complete dynamical description involves detailed knowledgdetween nodes. This will decrease the path length but in-
of each component and its coupling to the rest of the systenfrease the clustering coefficient. The path length is defined
In particular, the strong coupling between transmissiorS the shortest path between each pair of nodes averaged
nodes and their fast response to changes makes its compléXger all the nodes of the network. The clustering coefficient
mathematical description too complex. One interesting asis defined as follows: for a given node we calculate the num-
pect of such a system is that it suffers periodic disturbanceBer of neighboring nodes that are connected to each other
at all possible scales. Some of these disturbances are so smiild average this number over all the nodes in the network. A
that they only affect a few streets of a city. However, theysecond way of increasing the complexity of the network is to
are Occasiona”y |arge enough to imp"cate a Considerab|g1aintain a fixed number of connections between nOdeS, but
fraction of the total U. S. power grid. A recent analysis of to randomize them. This decreases both the path length and
disturbances in the U. S. power gfit]] has shown that such the clustering coefficient, although the rate of decrease is
disturbances are randomly distributed but that their effectyery different for these two quantities, as is typical of small-
[such as megawatt houf®!\Wh) unserved or number of cus- world networks[3]. Alternative two-dimensional network
tomers affectefishow the existence of long-range dependen-Structures are also considered.
cies. Furthermore, the probability distribution function of the ~ These different ways of increasing complexity led to very
size of the disturbances has a power law Sca"ng with thélmllar probablllty distribution fUnCtiOﬂsPDF’S) of distur-
exponent close te-1. This behavior of the power transmis- bances. In all cases, the PDF's have a power-scaling region
sion system is suggestive of a dynamical system close to #ith the exponent close te-1. This is consistent with the -
critical operation poinf2]. In the hope of capturing some of results of the analysis of disturbances of the U.S. power grid
the dynamics of transmission systems, we study here

simple network distribution model that operates close to a The rest of this paper is organized as follows. In Sec. II,
critical point. we introduce the dynamical model for power transmission

The model considered here is very simple. It consists of &nd describe the different network connections considered.

network of nodes. Each node represents a power generatiohfe scaling of the averaged size of the disturbances with the

transmission element. The nodes are characterized by a val@@rameters of the model is discussed in Sec. lIl. In Sec. IV,

of a “|oad,” and they can operate up to a maximum value Ofthe resulting PDF of the disturbance size is presentEd, and

the load. Each node is linked toother nodes, its neighbors. the effect of randomization of the connections is discussed.

The neighbors of a given node immediately react to anyinally, the conclusions of the paper are given in Sec. V.

change of load of this node. The links of the network do not

repre_sent the electric grid connections. They only_reflect e DYNAMICAL MODEL AND NETWORK TOPOLOGIES

coupling between elements of the power transmission sys-

tem. This simulates the coupling induced by the circuit equa- A power transmission system consists essentially of three

tions, which are not solved in this model. In developing thistypes of elements: power generators, power consumption

model, we started with the assumption that the essential dyenters, and transmission lings. Because we assume that

namics are governed by the degree of coupling of the netthe generation matches demand, we are only concerned with

work, how close to the maximum load each element opergenerators and transmission lines. Each of these elements is

ates, and the level of the loads transmitted when theharacterized by a position indek, an instantaneous load,

maximum load condition is violated. For the details on howZ;(t), at a time,t; and a critical loadZ;; above which it

the loads are transmitted, we assume that they are of lessnnot operate. In our simple model, we will takg;; to be

importance to the overall dynamics and will use a randonthe same for all elements of the system.

transmission to the neighboring nodes. In a realistic electric grid, there is a strong coupling
To represent the couplings between elements of the powemong all the loads in the system. This makes the calcula-
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lent to a one-dimensional sandpile with periodic boundary
conditions[2]. This analogy does not hold for larger values
of k. In thek=2 case, and because of the boundary condi-
tions, the averaged gradient of the sandpile is congtamt-
stant load in this modgl Therefore, this system cannot self-
organize. Self-organization is possible if we change ((ije
(@) (b) and allow the total load of the systefor gradient of the
k=4,R=0 k=4,R=0.2 sandpile to change with time. Nevertheless, the present
model is an interesting system to study and this form of rule
(1) allows us to explore its properties as the system ap-
proaches criticality. In this way, we can find out how the
distribution function of avalanche sizes behaves near this

tions rather complex. To avoid solving the circuit equations,pOInt [5]- The value ofZ, cqntrols hOW_ glose (@i the

we assume that this coupling may be described by defininays'[ern operates. However, in practice it is better toAi&e
nearest neighbors to each element. The neighbors of the eFZcit—Za @S the control parameter. The other two param-
ementi are the set of other elements whose loads are mo$tters relevant to the present studies ldreandk.

affected by a change in the load of elementherefore, we In this model, another more subtle dependence is not rep-
represent the coupling between elements through a networesented by any of the three parameters just mentioned. It is
in which the elements are nodes that are linked to theithe dependence on the topology of the network. We have
neighbors. Such a network should not be confused with thévestigated this dependence in two different ways. One way
electric grid itself. Let us first consider a simple configura-is by randomizing the links in the network. Once we have
tion by assuming that the network is a ring witmodes and  constructed a symmetric network, we modify it in the fol-
that each node is connected koof its nearest nodes, its lowing way. At each nodg we examine each of theto the
neighbors(Fig. 1). other nodes. With probabilitR, each link is reconnected to

In the time evolution of this system, we consider two time gnother randomly chosen no¢fEg. 1). In choosing the new
scales. One is a time scale of the order of one day. At everyiode, we exclude the nodes that have already been recon-
daily iteration and with a probabilitp,, an event may hap- nected and, of course, we do not allow the node to be con-
pen at node. The event consists of the transfer of a unit loadnected to itself. In this way we build a small-world network
from (or to) i to (or from) one of its neighbors. [3]. A second way of looking at the effect of the network

topology is by changing the basic structure of the network.
Zi(t+1)—Z(H =1, Apart from the ring structure, we have considered square,
(1) hexagon, and treelike networkBig. 2). For these networks
the effect of the randomization of the links has also been
considered.

Two parameters can be used to characterize a given net-
work [3]. One is the path length,,, which can be defined as
the average of the shortest paths from each node to each
other node, the shortest path being the least number of links
that have to be traversed to get from one node to another.
The other parameter is the clustering coeffici€htThe clus-

FIG. 1. Ring configuration witi.=8 andk=4, where(a) the
nodes are linked to their nearest neighbd®s=Q), and(b) 20% of
the links have been randomly reconnect&d=0.2).

Z(t+1)—Z;() 1.

Here, j identifies the location of a randomly chosen node
among thek neighbors of nodé We will refer to Eq.(1) as
rule (1). This rule conserves the total load of the system.

At every iteration all nodes are also tested for criticality.
If for any i Z;(t)>Z., thenN; units of load are transferred
to its neighbors:

Zi(t+1)=Z,(t)— N, ter_ing parameter of a node is defined as the nqmber of its
@) neighbors that are connected to each other divided by the
Z(t+1)=Z(t)+n;; total possible connections. The clustering coefficient is the
i j fjs )
average of the clustering parameters of all the nodes. For
for all j neighbors ofi. The load amounts transferred;;, ~ instance, in a ring network witk=2n connection, a given

are chosen randomly with the constraliyng=N; . In prac- node has neighb(_)rs on its right and neighbors on its left.
tice, the way that it is done is as follows. Each unit load inHence, on each side there &¢ connections between these
N; (N; is an integer is randomly assigned to one of the neighbors. Across the two groups amnén—1)/2 connec-
nearesf neighbors ofi. As we go through each unit iN¢, tions. Therefore, the total number of connections between
more than a unit load can be assigned to the same givenneighbors isN.=3n(n—1)/2. Since the total number of pos-
neighbor. We will refer to Eq(2) as rule(2). When the sible connections iNTzcﬁn, the clustering parameter &
criticality condition for rule (2) is verified, a disturbance =N./N;=(3/4)(k—2)/k—1. For a large network, with
(avalanchg starts. At this point, we consider a change of>1, itis easy to see that the path length. js=L/2k. There-
time scale and the basic unit of time is of the order of min-fore, in a ring network, increasing the number of connections
utes while the disturbance lasts, that is, while there are noddsreduces the path length and increases the clustering param-
with Z;(t)>Z;;. During this process, rulél) is not applied. eter. The largest changes li, and C occur in going from
In this way the different avalanches are separated. k=2 to k=4. On the other hand, increasing the probability
Both of the dynamical rules considered are conservativef random connectionR as shown in Ref[3] reduces both
rules. So the averaged load per no@&(t)), remains con- the path length and the clustering parameter, but at very dif-
stant;(Z;(t))=2Z,. Fork=2, this iteration scheme is equiva- ferent rates.
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FIG. 3. Averaged avalanche size for the ring configuration as a
function of A\ =k*N;/AZ, with «=0.22. All of the data obtained
varying the parameterdZ, k, andN; have been included in the
plot. For simplicity, we have only labeled the differektvalues.
The continuous line is the result of fitting the data with ER).

crease or decrease beyond a certain value, an avalanche can
begin and travel around the network continuously. This is the
second regime: nonstop avalanches. We have limited our
studies to the first regime.

In these studies, we have considered the following param-
eter ranges. The number &fconnections has been varied
from 2 to 12(we only consider even values &f. For each
givenk, we have performed two scans in the parambter
one forAZ=3 and the other foAZ=4. In those scans\;

(c) has been varied from 6 to 14. We have also performed scans
with AZ at a fixed value ofN; andk, and for eachk and

FIG. 2. Examples of networks wita) square structure(b) N;=10. In those scan®yZ has been varied from 3 to 8. For
hexagonal structure, ar(d) k=3 tree-type structure. all of these cases, about a total of 60, avalanche data has

. SCALING OF THE AVALANCHES been accumulated. We have included _between 15000 and
20000 avalanches per case. The following results are based

As described in the preceding section, the system evolvegn the analysis of all of these cases.
in such a way that avalanches cannot overlap. This seems to All of the results of the scaling of the averaged avalanche
be a regime close to the one relevant to power distributiorsize with the three parameters can be summarized in a single
systems. This separation between avalanches also allows tealing in terms of the parametar=k*N;/AZ. This is
study of their statistical properties as a function of the mairshown in Fig. 3 where we have plotted the averaged ava-
parameters of the model. To do so, we consider two standardnche size for the 60 cases considered. To have all results
measures of the avalanches. One is the avalanche Size, collapsing on a single curvey=0.22+0.2. The transition
which is the total number of criticality events with forced between the two regimes can be expressed in terms of a
transfer during the avalanche. Another measure is the avdhreshold value for the parameter\,. For the ring net-
lanche duration], which is the number of iterations from work configuration\y=5.62+0.26. The uncertainty in the
the beginning of the avalanche to its end. value of\g is due to the uncertainties in the value®@fThe

For most of the present studies, we have used a 200-nodenctional dependence of the averaged avalanche size is well
systemL =200, andZ.;= 105. Because the system is closeddescribed by the functioB(\), which is defined as
(or, equivalently, it is like a periodic sandpjlethere is no
dependence of the avalanches on the size of the system. Of ~ J1
course, if we make the system very small, size effects can S(N) = (A=Ng)?’ &)
become important. There is also little dependence of the ava-
lanches on the value oZ.; while Z.>AZ, and Z.;  Wwith g;=12.1. The numerical values for, and g, have
>Ns. been obtained from a fit to all data from the ring network. In

We consider first a ring configuration witR=0; in the  Fig. 4, we compare the results from the ring network to the
next section we discuss the effect of randomizing the netones obtained using the square, hexagonal, and treelike net-
work. Here we study the effect on the avalanches of changworks. We have used the same valued_aind Z, for the
ing AZ, N, andk. We keep two of these parameters fixed ring network andAZ=3. We have done aN; scan for each
and vary the other one. In all cases studied, we have foundf the three network configurations with £WN;=<11 for the
two regimes of operation. In one regime, the avalanches argguare, 8&N;<11 for the hexagon, and<9ON;=<13 for the
of finite size and distinctively separated. In this regime, wetreelike networks. The new data points of the averaged ava-
have found that the averaged avalanche size increases widnche size fall on a curve similar to the one obtained for the
increasingN; andk, and with decreasindZ. When we in-  ring network. As can be seen from the figure, the valug pf
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FIG. 4. Same as Fig. 3 with the addition of the data obtained

using the square, hexagonal, gkd 3 treelike networks. FIG. 6. Averaged avalanche si¢8); for avalanches of a given

durationT as a function of the duratiom for (a) k=2 and(b) k
=10 ring configurations. Same parameters as in Fig. 5.

for those other networks may be slightly lower than the value

obtained for the ring, but the change is less than 10%. There- V. PROBABILITY DISTRIBUTION FUNCTION

fore, the detailed structure of the network seems to play a OF AVALANCHES

very minor role in the determination of the scaling of ava-
lanche size with\.

Changing the number of connectioksot only changes
the size of the avalanches but also their topology in th . )
space-time plane. This can be seen in Fig. 5, where we hajYalanche sizes fakZ=3, N;=10, and varying but keep-
plotted the position of a node at the time when a forcedNd } <Ao. The PDF’s are not a pure power function $f
transfer occurs. In this two-dimensional pletode position However, therg is a range of value§$)for which the PDF
vs time, the avalanches appear as a sequence of black dof2n Pe approximated by a power with the exponent close to
For k=2, the avalanches are rather short, and most of them - '_A‘Sk increases, the power scaling range widgFig. .7)'
are represented, in this plane, by a single line. However, fotVe f|nq that the PDF of the avalanches is well described by
k=10, we can see the increased complexity of the avalanch@ function of the form
structure. A way of measuring the changes in the avalanche

It is interesting to see how the full PDF of the avalanches
changes when varying one of the three parameters of the
emodel. For instance, in Fig. 7 we have plotted the PDF of

structure is by calculating the averaged avalanche &8¢, P(S) = ge 5% ©
for avalanches of a given duratiom, and analyzing its de- 1+9/S;°

pendence ofT. In general, we find that it obeys a power

scaling law, that is, This functional form gives a & dependence over a broad

range of scales with a cutoff at the largest scales.
” For the different sets of parameters, Xasncreases the
()T, 4 value of the paramete, increases faster than the value of
S, (Fig. 8). The difference between their values is a measure
Here, o can be considered as an averaged dimension f the I_ength o_f the power scaling range. The_same behavior
the avallanches Whek is increased from 2 to 10¢ in- 95 obtained by increasing by means of increasinigor N or
: . decreasing\Z. In Fig. 7, we have also plotted the values of
creases from 1.26 to 1.4%ig. 6. Sp andS; for anN¢ scan withk=4 andAZ= 3. As the figure
shows and within the error bar due to the numerical calcula-

2 825 — . . tions and the functional fit, both parameters in Ex).can be
Seof@ . | -« T T T 3 q function of
0 regarded as a function of only.
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FIG. 5. Typical structure of avalanches in the plane node

number-time for(a) k=2 and(b) k=10 ring configurations. Both FIG. 7. PDF of avalanche size f&wZ=3, N;= 10, and varying
cases are foN;=10 andAZ=3. k.
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FIG. 8. Value of the parametef®, and S; for two different ~ coefficient forAZ=3, k=4, Ny=10, and varyingR.

parameter scans. Thescan is for the same parameters as in Fig. 7.
The N¢ scan is fork=4 andAZ=3. time plane. However, the avalanche dimensionality, as cal-
culated in Sec. Ill, remains the same after randomization of
the connections. The averaged avalanche size scales as a
ower of the clustering coefficieriFig. 10. The change in

he PDF is similar to increasing the number of connections;
Oﬁhe power-scaling region stretches, and for low clustering
oefficients, the PDF has a broad region scalingSas.

The scaling of the avalanche size wih for the square,
hexagon, and treelike networks is very similar to the scalin
found for the ring network.

Note that the PDF of the different measures of the sizes

the disturbances in the U.S. power grid falls off as a powe herefore, the main effect of the randomization is to change

function with the exponent cl toel [1]. In spite of th . S . .
r:trfero simple rr?o?jeiljoth?it V\(/:eosheavz u[sgd hjrr‘)e eﬂ?e pgwe'the value of the critical point in the variable, decreasing the
scaling region of the avalanches is consistent with this poweﬁhreShOIOI to the continuous avalanche regime. For these
dependence. small-world networkg 3], the threshold value of the second

Because the paramete8g and S, are different functions reg\i/\r/r;}e Is significlfm'ily dlecre?;(.amiogc[|C(F\J’[L/Ct(k(]))]°;3.ld f
of A, there is no global self-similarity transformation of €n we work at values ot Just below the threshod o
the PDF's. HoweverS, is always smaller tharS,, and the continuous a\_/a_lanche regime, the calculation of the PDF
in reqimes of interesltS <S,. In this case S(;P(S) becomes very difficult. In this case, some avalanches are
- Slgex CX)/x Wherex'= é/So .This is the samé as saving VeV long, and it is difficult to obtain meaningful statistics. In

9 PE=X)IX, W o SYING 1his situation the functional form of the PDF is different from
that a self-similarity transformation of the PDF exists for

large values ofs. Such self-similarity can be seen in Fig. 9, the one given by Eq(5). We can see these changes better

where we have plotted the PDF of the avalanche sizes for \évhen we randomize the connection of the network because

sequence of calculations withZ=3, k=4, and varyingN we can get as close to the threshold as we like by varying the
— 9, K— 4, f- oy . . .
In this figure we have plotte8,P as a function o&/Sy. For probabilityRin a continuous manner. The change in the PDF

. is shown in Fig. 11, where we have plotted a sequence of
\éﬁlrl\JIZS 0f §/$,>0.01, all the data collapse onto a single 5, for AZ=3, k=4, N;=10, and varyingR.

Up to now, we have considered symmetric networks with
R=0. Let us now turn to the effect of takirig= 0. Random- V. CONCLUSIONS
izing the connections in the ring networks increases the av-
eraged avalanche size, but it is not clear that it changes t ST i e
topology of avalanches. Note that the less clustered the ne __des some insight into the nature and probability distribu

work, the less localized an avalanche will be in the s ace—On of disturbances. All the resuilts on the scaling of the
' P averaged avalanche size with the main three parameters of

the model,Ns, k, andAZ, can be summarized in a single

The simple power transmission model presented here pro-
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FIG. 9. PDF of the avalanche sizes for a sequence of calcula-
tions with AZ=3, k=4, and varyingN; . In this figure we have FIG. 11. PDF of the avalanche size for the same sequence of
plotted SyP as a function of5/S;. calculations as the ones shown in Fig. 10.
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scaling in terms of the parametar=k“N;/AZ. We have sion systems. Therefore, it could come close to describing
found two regimes of operation. In one regime, the avathe real PDF of the disturbances. As a matter of fact, the
lanches are of finite size and distinctively separated. In thi@xponent of the power-scaling region of the PDF-4,
regime, we have found that the averaged avalanche size imlose to the values obtained in the analysis of the distur-
creases withh. When we increase. beyond a threshold bances in the U.S. power grid].

value,\y, an avalanche can travel around the system indefi- The results of this model must be tested for their rel-
nitely, that is, the avalanche size is infinite. This is the secevance to real power systems. These tests require more com-
ond regime. We have limited our studies to the first regimeplete models that involve the solution of the circuit equa-

For symmetric networks, the value of the threshold doegions. Work is in progress to address this issue.
not vary significantly when we change the topology. How-
ever,\, is strongly affected by randomization of the network
links, small-world network$3].

The form of the PDF seems to be rather resistant to One of the authoréB.A.C.) gratefully acknowledges very
changes in the type of connections in the system. They alsstimulating and useful discussions with D. E. Newman and I.
have a well defined scaling form with the parameters of thédobson. This research was carried out at Oak Ridge National
model. The resistivity of the functional form of the PDF to Laboratory, which is managed by Lockheed Martin Energy
changes in parameters and connectivity suggests that it coullesearch Corp. for the U.S. Department of Energy under
remain the same in more detailed models of power transmigcontract No. DE-AC05-960R22464.
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