
PHYSICAL REVIEW E MAY 2000VOLUME 61, NUMBER 5
Disturbances in a power transmission system

M. L. Sachtjen, B. A. Carreras, and V. E. Lynch
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

~Received 4 October 1999; revised manuscript received 7 January 2000!

A simple model for a power transmission system is presented. In this model, disturbances of all sizes may
occur. They are randomly triggered and have the characteristic behavior of avalanches. A single parameter
describes the scaling of the avalanche size. This parameter combines a measure of closeness to the maximum
load, size of transferred loads during an overloading event, and connectivity of the system. The probability
distribution function of the size of the disturbance has power-scaling range with the exponent close to21.

PACS number~s!: 05.40.2a, 05.45.2a
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I. INTRODUCTION

Power transmission systems are complex systems. T
complete dynamical description involves detailed knowled
of each component and its coupling to the rest of the syst
In particular, the strong coupling between transmiss
nodes and their fast response to changes makes its com
mathematical description too complex. One interesting
pect of such a system is that it suffers periodic disturban
at all possible scales. Some of these disturbances are so
that they only affect a few streets of a city. However, th
are occasionally large enough to implicate a considera
fraction of the total U. S. power grid. A recent analysis
disturbances in the U. S. power grid@1# has shown that such
disturbances are randomly distributed but that their effe
@such as megawatt hours~MWh! unserved or number of cus
tomers affected# show the existence of long-range depend
cies. Furthermore, the probability distribution function of t
size of the disturbances has a power law scaling with
exponent close to21. This behavior of the power transmis
sion system is suggestive of a dynamical system close
critical operation point@2#. In the hope of capturing some o
the dynamics of transmission systems, we study her
simple network distribution model that operates close t
critical point.

The model considered here is very simple. It consists o
network of nodes. Each node represents a power genera
transmission element. The nodes are characterized by a v
of a ‘‘load,’’ and they can operate up to a maximum value
the load. Each node is linked tok other nodes, its neighbors
The neighbors of a given node immediately react to a
change of load of this node. The links of the network do n
represent the electric grid connections. They only reflect
coupling between elements of the power transmission
tem. This simulates the coupling induced by the circuit eq
tions, which are not solved in this model. In developing t
model, we started with the assumption that the essential
namics are governed by the degree of coupling of the
work, how close to the maximum load each element op
ates, and the level of the loads transmitted when
maximum load condition is violated. For the details on ho
the loads are transmitted, we assume that they are of
importance to the overall dynamics and will use a rand
transmission to the neighboring nodes.

To represent the couplings between elements of the po
PRE 611063-651X/2000/61~5!/4877~6!/$15.00
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system, we first consider a simple ring network; then,
increase the complexity of this network in two differe
ways. One way is by increasing the number of connecti
between nodes. This will decrease the path length but
crease the clustering coefficient. The path length is defi
as the shortest path between each pair of nodes aver
over all the nodes of the network. The clustering coefficie
is defined as follows: for a given node we calculate the nu
ber of neighboring nodes that are connected to each o
and average this number over all the nodes in the network
second way of increasing the complexity of the network is
maintain a fixed number of connections between nodes,
to randomize them. This decreases both the path length
the clustering coefficient, although the rate of decrease
very different for these two quantities, as is typical of sma
world networks @3#. Alternative two-dimensional network
structures are also considered.

These different ways of increasing complexity led to ve
similar probability distribution functions~PDF’s! of distur-
bances. In all cases, the PDF’s have a power-scaling re
with the exponent close to21. This is consistent with the
results of the analysis of disturbances of the U.S. power g
@1#.

The rest of this paper is organized as follows. In Sec.
we introduce the dynamical model for power transmiss
and describe the different network connections conside
The scaling of the averaged size of the disturbances with
parameters of the model is discussed in Sec. III. In Sec.
the resulting PDF of the disturbance size is presented,
the effect of randomization of the connections is discuss
Finally, the conclusions of the paper are given in Sec. V

II. DYNAMICAL MODEL AND NETWORK TOPOLOGIES

A power transmission system consists essentially of th
types of elements: power generators, power consump
centers, and transmission lines@4#. Because we assume th
the generation matches demand, we are only concerned
generators and transmission lines. Each of these elemen
characterized by a position index,I; an instantaneous load
Zi(t), at a time,t; and a critical load,Zcrit above which it
cannot operate. In our simple model, we will takeZcrit to be
the same for all elements of the system.

In a realistic electric grid, there is a strong couplin
among all the loads in the system. This makes the calc
4877 ©2000 The American Physical Society
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tions rather complex. To avoid solving the circuit equatio
we assume that this coupling may be described by defin
nearest neighbors to each element. The neighbors of th
ementi are the set of other elements whose loads are m
affected by a change in the load of elementi. Therefore, we
represent the coupling between elements through a netw
in which the elements are nodes that are linked to th
neighbors. Such a network should not be confused with
electric grid itself. Let us first consider a simple configur
tion by assuming that the network is a ring withL nodes and
that each node is connected tok of its nearest nodes, it
neighbors~Fig. 1!.

In the time evolution of this system, we consider two tim
scales. One is a time scale of the order of one day. At ev
daily iteration and with a probabilityp0 , an event may hap
pen at nodei. The event consists of the transfer of a unit lo
from ~or to! i to ~or from! one of its neighborsj.

Zi~ t11!→Zi~ t !61,
~1!

Zj~ t11!→Zj~ t !71.

Here, j identifies the location of a randomly chosen no
among thek neighbors of nodei. We will refer to Eq.~1! as
rule ~1!. This rule conserves the total load of the system.

At every iteration all nodes are also tested for criticali
If for any i Zi(t).Zcrit , thenNf units of load are transferre
to its neighbors:

Zi~ t11!5Zi~ t !2Nf ,
~2!

Zj~ t11!5Zj~ t !1nf j ,

for all j neighbors ofi. The load amounts transferred,nf j ,
are chosen randomly with the constraintS jnf j5Nf . In prac-
tice, the way that it is done is as follows. Each unit load
Nf ~Nf is an integer! is randomly assigned to one of th
nearestj neighbors ofi. As we go through each unit inNf ,
more than a unit load can be assigned to the same givj
neighbor. We will refer to Eq.~2! as rule ~2!. When the
criticality condition for rule ~2! is verified, a disturbance
~avalanche! starts. At this point, we consider a change
time scale and the basic unit of time is of the order of m
utes while the disturbance lasts, that is, while there are no
with Zi(t).Zcrit . During this process, rule~1! is not applied.
In this way the different avalanches are separated.

Both of the dynamical rules considered are conserva
rules. So the averaged load per node,^Z(t)&, remains con-
stant;^Zi(t)&5Za . Fork52, this iteration scheme is equiva

FIG. 1. Ring configuration withL58 andk54, where~a! the
nodes are linked to their nearest neighbors (R50), and~b! 20% of
the links have been randomly reconnected (R50.2).
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lent to a one-dimensional sandpile with periodic bound
conditions@2#. This analogy does not hold for larger value
of k. In the k52 case, and because of the boundary con
tions, the averaged gradient of the sandpile is constant~con-
stant load in this model!. Therefore, this system cannot se
organize. Self-organization is possible if we change rule~1!
and allow the total load of the system~or gradient of the
sandpile! to change with time. Nevertheless, the pres
model is an interesting system to study and this form of r
~1! allows us to explore its properties as the system
proaches criticality. In this way, we can find out how th
distribution function of avalanche sizes behaves near
point @5#. The value ofZa controls how close toZcrit the
system operates. However, in practice it is better to useDZ
[Zcrit2Za as the control parameter. The other two para
eters relevant to the present studies areNf andk.

In this model, another more subtle dependence is not
resented by any of the three parameters just mentioned.
the dependence on the topology of the network. We h
investigated this dependence in two different ways. One w
is by randomizing the links in the network. Once we ha
constructed a symmetric network, we modify it in the fo
lowing way. At each nodei, we examine each of thek to the
other nodes. With probabilityR, each link is reconnected to
another randomly chosen node~Fig. 1!. In choosing the new
node, we exclude the nodes that have already been re
nected and, of course, we do not allow the node to be c
nected to itself. In this way we build a small-world netwo
@3#. A second way of looking at the effect of the netwo
topology is by changing the basic structure of the netwo
Apart from the ring structure, we have considered squa
hexagon, and treelike networks~Fig. 2!. For these networks
the effect of the randomization of the links has also be
considered.

Two parameters can be used to characterize a given
work @3#. One is the path length,Ln , which can be defined a
the average of the shortest paths from each node to e
other node, the shortest path being the least number of l
that have to be traversed to get from one node to anot
The other parameter is the clustering coefficient,C. The clus-
tering parameter of a node is defined as the number o
neighbors that are connected to each other divided by
total possible connections. The clustering coefficient is
average of the clustering parameters of all the nodes.
instance, in a ring network withk52n connection, a given
node hasn neighbors on its right andn neighbors on its left.
Hence, on each side there areCn

2 connections between thes
neighbors. Across the two groups aren(n21)/2 connec-
tions. Therefore, the total number of connections betw
neighbors isNc53n(n21)/2. Since the total number of pos
sible connections isNT5C2n

2 , the clustering parameter isC
[Nc /NT5(3/4)(k22)/k21. For a large network, withL
@1, it is easy to see that the path length isLp'L/2k. There-
fore, in a ring network, increasing the number of connectio
k reduces the path length and increases the clustering pa
eter. The largest changes inLn and C occur in going from
k52 to k54. On the other hand, increasing the probabil
of random connectionsR as shown in Ref.@3# reduces both
the path length and the clustering parameter, but at very
ferent rates.
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PRE 61 4879DISTURBANCES IN A POWER TRANSMISSION SYSTEM
III. SCALING OF THE AVALANCHES

As described in the preceding section, the system evo
in such a way that avalanches cannot overlap. This seem
be a regime close to the one relevant to power distribu
systems. This separation between avalanches also allow
study of their statistical properties as a function of the m
parameters of the model. To do so, we consider two stan
measures of the avalanches. One is the avalanche sizS,
which is the total number of criticality events with force
transfer during the avalanche. Another measure is the
lanche duration,T, which is the number of iterations from
the beginning of the avalanche to its end.

For most of the present studies, we have used a 200-n
system,L5200, andZcrit5105. Because the system is clos
~or, equivalently, it is like a periodic sandpile!, there is no
dependence of the avalanches on the size of the system
course, if we make the system very small, size effects
become important. There is also little dependence of the a
lanches on the value ofZcrit while Zcrit@DZ, and Zcrit
@Nf .

We consider first a ring configuration withR50; in the
next section we discuss the effect of randomizing the n
work. Here we study the effect on the avalanches of cha
ing DZ, Nf , andk. We keep two of these parameters fix
and vary the other one. In all cases studied, we have fo
two regimes of operation. In one regime, the avalanches
of finite size and distinctively separated. In this regime,
have found that the averaged avalanche size increases
increasingNf andk, and with decreasingDZ. When we in-

FIG. 2. Examples of networks with~a! square structure,~b!
hexagonal structure, and~c! k53 tree-type structure.
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crease or decrease beyond a certain value, an avalanch
begin and travel around the network continuously. This is
second regime: nonstop avalanches. We have limited
studies to the first regime.

In these studies, we have considered the following para
eter ranges. The number ofk connections has been varie
from 2 to 12~we only consider even values ofk!. For each
given k, we have performed two scans in the parameterNf ,
one forDZ53 and the other forDZ54. In those scans,Nf
has been varied from 6 to 14. We have also performed sc
with DZ at a fixed value ofNf and k, and for eachk and
Nf510. In those scans,DZ has been varied from 3 to 8. Fo
all of these cases, about a total of 60, avalanche data
been accumulated. We have included between 15 000
20 000 avalanches per case. The following results are ba
on the analysis of all of these cases.

All of the results of the scaling of the averaged avalanc
size with the three parameters can be summarized in a si
scaling in terms of the parameterl[kaNf /DZ. This is
shown in Fig. 3 where we have plotted the averaged a
lanche size for the 60 cases considered. To have all res
collapsing on a single curve,a50.2260.2. The transition
between the two regimes can be expressed in terms
threshold value for the parameterl5l0 . For the ring net-
work configuration,l055.6260.26. The uncertainty in the
value ofl0 is due to the uncertainties in the value ofa. The
functional dependence of the averaged avalanche size is
described by the functionŜ(l), which is defined as

Ŝ~l!5
g1

~l2l0!2 , ~3!

with g1512.1. The numerical values forl0 and g1 have
been obtained from a fit to all data from the ring network.
Fig. 4, we compare the results from the ring network to
ones obtained using the square, hexagonal, and treelike
works. We have used the same values ofL and Za for the
ring network andDZ53. We have done anNf scan for each
of the three network configurations with 10<Nf<11 for the
square, 8<Nf<11 for the hexagon, and 9<Nf<13 for the
treelike networks. The new data points of the averaged a
lanche size fall on a curve similar to the one obtained for
ring network. As can be seen from the figure, the value ofl0

FIG. 3. Averaged avalanche size for the ring configuration a
function of l[kaNf /DZ, with a50.22. All of the data obtained
varying the parametersDZ, k, and Nf have been included in the
plot. For simplicity, we have only labeled the differentk values.
The continuous line is the result of fitting the data with Eq.~3!.
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for those other networks may be slightly lower than the va
obtained for the ring, but the change is less than 10%. Th
fore, the detailed structure of the network seems to pla
very minor role in the determination of the scaling of av
lanche size withl.

Changing the number of connectionsk not only changes
the size of the avalanches but also their topology in
space-time plane. This can be seen in Fig. 5, where we h
plotted the position of a node at the time when a forc
transfer occurs. In this two-dimensional plot~node position
vs time!, the avalanches appear as a sequence of black
For k52, the avalanches are rather short, and most of th
are represented, in this plane, by a single line. However,
k510, we can see the increased complexity of the avalan
structure. A way of measuring the changes in the avalan
structure is by calculating the averaged avalanche size,^S&T ,
for avalanches of a given duration,T, and analyzing its de-
pendence onT. In general, we find that it obeys a pow
scaling law, that is,

^S&T}Ts. ~4!

Here, s can be considered as an averaged dimensio
the avalanches. Whenk is increased from 2 to 10,s in-
creases from 1.26 to 1.43~Fig. 6!.

FIG. 4. Same as Fig. 3 with the addition of the data obtain
using the square, hexagonal, andk53 treelike networks.

FIG. 5. Typical structure of avalanches in the plane no
number-time for~a! k52 and~b! k510 ring configurations. Both
cases are forNf510 andDZ53.
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IV. PROBABILITY DISTRIBUTION FUNCTION
OF AVALANCHES

It is interesting to see how the full PDF of the avalanch
changes when varying one of the three parameters of
model. For instance, in Fig. 7 we have plotted the PDF
avalanche sizes forDZ53, Nf510, and varyingk but keep-
ing l,l0 . The PDF’s are not a pure power function ofS.
However, there is a range of values ofS for which the PDF
can be approximated by a power with the exponent clos
21. As k increases, the power scaling range widens~Fig. 7!.
We find that the PDF of the avalanches is well described
a function of the form

P~S!5
ge2S/S0

11S/S1
. ~5!

This functional form gives a 1/S dependence over a broa
range of scales with a cutoff at the largest scales.

For the different sets of parameters, asl increases the
value of the parameterS0 increases faster than the value
S1 ~Fig. 8!. The difference between their values is a meas
of the length of the power scaling range. The same beha
is obtained by increasingl by means of increasingk or Nf or
decreasingDZ. In Fig. 7, we have also plotted the values
S0 andS1 for anNf scan withk54 andDZ53. As the figure
shows and within the error bar due to the numerical calcu
tions and the functional fit, both parameters in Eq.~5! can be
regarded as a function of onlyl.

d

e

FIG. 6. Averaged avalanche size^S&T for avalanches of a given
durationT as a function of the durationT for ~a! k52 and ~b! k
510 ring configurations. Same parameters as in Fig. 5.

FIG. 7. PDF of avalanche size forDZ53, Nf510, and varying
k.
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PRE 61 4881DISTURBANCES IN A POWER TRANSMISSION SYSTEM
The scaling of the avalanche size withNf for the square,
hexagon, and treelike networks is very similar to the scal
found for the ring network.

Note that the PDF of the different measures of the size
the disturbances in the U.S. power grid falls off as a pow
function with the exponent close to21 @1#. In spite of the
rather simple model that we have used here, the pow
scaling region of the avalanches is consistent with this po
dependence.

Because the parametersS0 andS1 are different functions
of l, there is no global self-similarity transformation o
the PDF’s. However,S1 is always smaller thanS0 , and
in regimes of interest,S1!S0 . In this case, S0P(S)
'gS1 exp(2x)/x, wherex5S/S0 . This is the same as sayin
that a self-similarity transformation of the PDF exists f
large values ofS. Such self-similarity can be seen in Fig.
where we have plotted the PDF of the avalanche sizes f
sequence of calculations withDZ53, k54, and varyingNf .
In this figure we have plottedS0P as a function ofS/S0 . For
values of S/S0.0.01, all the data collapse onto a sing
curve.

Up to now, we have considered symmetric networks w
R50. Let us now turn to the effect of takingRÞ0. Random-
izing the connections in the ring networks increases the
eraged avalanche size, but it is not clear that it changes
topology of avalanches. Note that the less clustered the
work, the less localized an avalanche will be in the spa

FIG. 8. Value of the parametersS0 and S1 for two different
parameter scans. Thek scan is for the same parameters as in Fig
The Nf scan is fork54 andDZ53.

FIG. 9. PDF of the avalanche sizes for a sequence of calc
tions with DZ53, k54, and varyingNf . In this figure we have
plottedS0P as a function ofS/S0 .
g
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time plane. However, the avalanche dimensionality, as
culated in Sec. III, remains the same after randomization
the connections. The averaged avalanche size scales
power of the clustering coefficient~Fig. 10!. The change in
the PDF is similar to increasing the number of connectio
the power-scaling region stretches, and for low cluster
coefficients, the PDF has a broad region scaling asS21.
Therefore, the main effect of the randomization is to chan
the value of the critical point in thel variable, decreasing the
threshold to the continuous avalanche regime. For th
small-world networks@3#, the threshold value of the secon
regime is significantly decreased:Dl0}@C(R)/C(0)#0.63.

When we work at values ofl just below the threshold o
the continuous avalanche regime, the calculation of the P
becomes very difficult. In this case, some avalanches
very long, and it is difficult to obtain meaningful statistics.
this situation the functional form of the PDF is different fro
the one given by Eq.~5!. We can see these changes bet
when we randomize the connection of the network beca
we can get as close to the threshold as we like by varying
probabilityR in a continuous manner. The change in the P
is shown in Fig. 11, where we have plotted a sequence
PDF’s for DZ53, k54, Nf510, and varyingR.

V. CONCLUSIONS

The simple power transmission model presented here
vides some insight into the nature and probability distrib
tion of disturbances. All the results on the scaling of t
averaged avalanche size with the main three paramete
the model,Nf , k, and DZ, can be summarized in a singl

.

a-

FIG. 10. Averaged avalanche size as a function of the cluste
coefficient forDZ53, k54, Nf510, and varyingR.

FIG. 11. PDF of the avalanche size for the same sequenc
calculations as the ones shown in Fig. 10.
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scaling in terms of the parameterl[kaNf /DZ. We have
found two regimes of operation. In one regime, the a
lanches are of finite size and distinctively separated. In
regime, we have found that the averaged avalanche siz
creases withl. When we increasel beyond a threshold
value,l0 , an avalanche can travel around the system ind
nitely, that is, the avalanche size is infinite. This is the s
ond regime. We have limited our studies to the first regim

For symmetric networks, the value of the threshold do
not vary significantly when we change the topology. Ho
ever,l0 is strongly affected by randomization of the netwo
links, small-world networks@3#.

The form of the PDF seems to be rather resistant
changes in the type of connections in the system. They
have a well defined scaling form with the parameters of
model. The resistivity of the functional form of the PDF
changes in parameters and connectivity suggests that it c
remain the same in more detailed models of power transm
in
em
-
is
in-

fi-
-
.
s
-

o
so
e

ld
s-

sion systems. Therefore, it could come close to describ
the real PDF of the disturbances. As a matter of fact,
exponent of the power-scaling region of the PDF is21,
close to the values obtained in the analysis of the dis
bances in the U.S. power grid@1#.

The results of this model must be tested for their r
evance to real power systems. These tests require more
plete models that involve the solution of the circuit equ
tions. Work is in progress to address this issue.
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